Lecture 6:

Recall:

Discrete Fourier Transform:

Definition:

The 2D DFT of a M×N image
$$g = (g(k, l))_{k,l}$$
, where $0 \le k \le M-1$, $0 \le l \le N-1$ is defined as:
$$\widehat{g}(m, n) = \frac{1}{MN} \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} g(k, l) e$$
(where $j = J-1$, $e^{j\theta} = \cos\theta + j \sin\theta$)

Remark: The inverse of DFT is given by:

$$g(p,q) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \hat{g}(m,n) \in A^{-1} \left(\frac{pm}{M} + \frac{qn}{N}\right)$$

$$\left(no \frac{1}{Mn}!\right) \qquad \left(no -ve \text{ sign}\right)$$

DFT in Matrix form

where
$$U = (Ukl)_{0 \le k, l \le N-1} \in M_{NN}$$
 and $Ukl = \frac{1}{N}e^{-j\frac{2\pi kl}{N}}$

Theorem:
$$U^*U = \frac{1}{N}I$$
 where $U^* = (\overline{U})^T$ (conjugate transpose)
$$UU^* = \frac{1}{N}I.$$

$$(\overline{a+jb} = a-jb)$$

$$(\overline{e}^{j\theta} = \overline{cos\theta+jsin\theta} = \overline{cos\theta-jsin\theta}$$

$$(e^{j\theta} = \cos\theta + j\sin\theta = \cos\theta - j\sin\theta = e^{-j\theta})$$

Image decomposition by DFT

Suppose
$$\hat{g} = DFT(g) = UgU$$

where
$$\vec{\omega}_{g} = k^{th} \cot of (Nu)^{*}$$

Remark:

Note that $UU^* = \frac{1}{N}I$ unitary.

If we normalize U to U = JNU. Then U is unitary!

Some other definition of DFT: (ID) $\hat{f}(m) = \frac{1}{N} \sum_{n=0}^{k-1} f(k) e^{-j(\frac{2\pi m k}{N})}$

(2D)
$$\hat{f}(m,n) = \frac{1}{N} \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} f(k,l) e^{-j2\pi \left(\frac{mk+nl}{N}\right)}$$

In this case, let $\widetilde{U} = (\widetilde{U}_{kl})_{0 \le k, l \le N-1}$; $\widetilde{U}_{kl} = \frac{1}{JN} e^{-j\frac{2\pi k l}{N}}$ Then: Then, $\widetilde{U} = JNU$

i. Normalizing the definition of DFT => unitary u can be applied!

BUT: Inverse DFT must be adjusted!

Mathematics of JPEG (Optional)

Consider a $M \times N$ image f. Extend f to a $2M \times 2N$ image \tilde{f} , whose indices are taken from [-M, M-1] and [-N, N-1].

Define f(k, l) for $-M \le k \le M - 1$ and $-N \le l \le N - 1$ such that

$$f(-k-1,-l-1) = f(k,l)$$
 } Reflection about $(-1/2,-1/2)$
 $f(-k-1,l) = f(k,l)$ } Reflection about the axis $k = -1/2$ and $l = -1/2$

(-1/2,-1/2). l--3 l--2 l--1 l-0 l-1 l=2

$$f(k,l-1) = f(k,l)$$
The nection about the axis $k = -1/2$ and $l = -1/2$

$$\begin{cases} 1 = -1/2 \\ 2 = -1/2 \end{cases}$$

$$\begin{cases} 9 & 8 & 7 & 7 & 8 & 9 \\ 6 & 5 & 4 & 4 & 5 \\ 6 & 5 & 4 & 4 & 5 \end{cases}$$

$$\begin{cases} 3 & 2 & 1 & 1 & 2 & 3 \\ 3 & 2 & 1 & 1 & 2 & 3 \\ 4 & 2 & 3 & 4 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 3 \\ 4 & 3 & 4 & 4 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 3 \\ 4 & 3 & 4 & 4 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 3 \\ 4 & 3 & 4 & 4 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 3 \\ 4 & 3 & 4 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 3 \\ 4 & 3 & 4 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 3 \\ 4 & 3 & 4 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 3 \\ 4 & 3 & 4 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 3 \\ 4 & 3 & 4 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 4 \\ 4 & 3 & 4 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 4 \\ 4 & 3 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 4 \\ 4 & 3 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 4 \\ 4 & 3 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 4 \\ 4 & 3 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 4 \\ 4 & 3 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 4 \\ 4 & 3 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 4 \\ 4 & 3 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 4 \\ 4 & 3 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 4 \\ 4 & 3 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 4 \\ 4 & 3 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 4 \\ 4 & 3 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 4 \\ 4 & 3 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 4 \\ 4 & 3 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 4 \\ 4 & 3 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 4 \\ 4 & 3 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 4 \\ 4 & 3 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 4 \\ 4 & 3 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 4 \\ 4 & 3 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 4 \\ 4 & 3 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 4 \\ 4 & 3 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 4 \\ 4 & 3 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 4 \\ 4 & 3 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 1 & 2 & 4 \\ 4 & 3 & 4 & 4 \end{cases}$$

$$\begin{cases} (-1, 1) \\ 3 & 2 & 1 & 4$$

Make the extension as a reflection about (0,0), the axis k=0 and the axis l=0. Done by shifting the image by $(\frac{1}{2},\frac{1}{2})$

After strifting							
9	8	7	7	8	9	$\frac{1}{2}+(-3)$	
6	5	4	4	5	6	$\frac{1}{2}$ + (-2)	
3	2	1	1	2	3	1 +(-1)	
3	2	1	1	2	3	1 + 0	k
6	5	4	4	5	6	1 +(
9	8		7	8	9	1 + 2	
-3 -3	1 + -2	1 + -1	12+0	1 + {	12 + 2 ,		

Now, we compute the DFT of (shifted) \tilde{f} :

$$F(m,n) = \frac{1}{(2M)(2N)} \sum_{k=-M}^{M-1} \sum_{l=-N}^{N-1} f(k,l) e^{-j\frac{2\pi}{2M}m(k+\frac{1}{2})} e^{-j\frac{2\pi}{2N}n(l+\frac{1}{2})}$$

$$= \frac{1}{4MN} \sum_{k=-M}^{M-1} \sum_{l=-N}^{N-1} f(k,l) e^{-j(\frac{\pi}{M}m(k+\frac{1}{2}) + \frac{\pi}{N}n(l+\frac{1}{2}))}$$

$$= \frac{1}{4MN} (\sum_{k=-M}^{-1} \sum_{l=-N}^{-1} + \sum_{k=-M}^{-1} \sum_{l=0}^{N-1} + \sum_{k=0}^{M-1} \sum_{l=-N}^{-1} + \sum_{k=0}^{M-1} \sum_{l=0}^{N-1})$$

$$f(k,l) e^{-j(\frac{\pi}{M}m(k+\frac{1}{2}) + \frac{\pi}{N}n(l+\frac{1}{2}))}$$

After some messy simplication, we can get:

$$A_1 + A_2 + A_3 + A_4 = \frac{1}{MN} \sum_{k=0}^{M-1} \sum_{l=0}^{N-1} f(k,l) \cos \left[\frac{m\pi}{M} \left(k + \frac{1}{2} \right) \right] \cos \left[\frac{n\pi}{N} \left(l + \frac{1}{2} \right) \right]$$

Definition: (Even symmetric discrete cosine transform [EDCT])

Let f be a $M \times N$ image, whose indices are taken as $0 \le k \le M - 1$ and $0 \le l \le N - 1$. The **even symmetric discrete cosine transform (EDCT)** of f is given by:

$$\hat{f}_{ec}(m,n) = \frac{1}{MN} \sum_{k=0}^{M-1} \sum_{l=0}^{N-1} f(k,l) \cos\left[\frac{m\pi}{M} \left(k + \frac{1}{2}\right)\right] \cos\left[\frac{n\pi}{N} \left(l + \frac{1}{2}\right)\right]$$

with $0 \le m \le M - 1, 0 \le n \le N - 1$

Remark: Smart idea to get a decomposition consisting only of cosine function (by reflection and oblifting!)

- · Can be formulated in matrix form
- · Again, it is a separable image transformation.

• The inverse of EDCT can be explicitly computed. More specifically, the **inverse EDCT** is defined as:

$$f(k,l) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} C(m)C(n)\hat{f}_{ec}(m,n)\cos\frac{\pi m(2k+1)}{2M}\cos\frac{\pi n(2l+1)}{2N} \tag{**}$$

where C(0) = 1, C(m) = C(n) = 2 for $m, n \neq 0$

Also involving cosine ion: functions only!

• Formula (**) can be expressed as matrix multiplication:

$$f = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \hat{f}_{ec}(m,n) \vec{\nabla}_m \vec{T}'_n$$
 elementary images under EDCT!

Why is DFT useful in imaging:

1. DFT of convolution:

Recall:
$$g * \omega(n, m) = \sum_{n'=0}^{N-1} \sum_{m'=0}^{N-1} g(n-n', m-m') \omega(n', m')$$

 $(g, m \in M_{N \times M}(R))$

in DFT of convolution can be reduced to simple multiplication!

Proof:

DFT of
$$g*\omega$$
 at (p, g)

$$= \frac{1}{NM} \sum_{n=0}^{N-1} \sum_{m=0}^{M-1} g*\omega(n,m) e^{-j2\pi(\frac{pn}{N} + \frac{2m}{M})}$$

$$= \frac{1}{NM} \sum_{n=0}^{N-1} \sum_{m'=0}^{M-1} \sum_{n=0}^{N-1} \sum_{m'=0}^{M-1} g(n-n', m-m') \omega(n', m') e^{-j2\pi(\frac{pn}{N} + \frac{2m}{M})}$$

$$= \frac{1}{NM} \sum_{n'=0}^{N-1} \sum_{m'=0}^{M-1} \sum_{n=0}^{N-1} \sum_{m'=0}^{M-1} g(n-n', m-m') \omega(n', m') e^{-j2\pi(\frac{pn}{N} + \frac{2m}{M})}$$

$$= \frac{1}{NM} \sum_{n'=0}^{N-1} \sum_{m'=0}^{M-1} \omega(n',m') e^{-j^2 \overline{1} (\frac{pn'}{N} + \frac{qm'}{M})} \sum_{n''=-n'}^{N-1-n'} \frac{1}{M''=-m'} \beta(n'',m'') e^{-j^2 \overline{1} (\frac{pn''}{N} + \frac{qm''}{M})}$$

Note that: g and w are periodically extended.

$$g(n-N, m) = g(n, m)$$
 and $g(n, m-M) = g(n, m)$

Change of variables:

$$-j^{2\pi}\left(\frac{pn}{N}+\frac{gm}{M}\right)$$

T(PR)

Consider
$$\sum_{n''=-n'}^{-1} g(n'', m'') e^{-j2\pi \frac{pn''}{N}} \frac{n'''=N+n''}{\sum_{n'''=N-n'}^{N-1}} \frac{g(n'''-N, m'')}{g(n''', m'')} e^{-j2\pi \left(\frac{pn''}{N}\right)} e^{-j2\pi \left(\frac{pn''}{N}\right)} e^{-j2\pi \frac{pn''}{N}}$$
We can do similar thing for index m''.

Note. (Spatial domain) Linear filtering: I x g Cinear combination of heighborhood pixel

DFT values) Modifying the MNIO 9 (frequency domain) Fourier coefficients pixel-wise by multiplication) multiplication

2 DFT of a shifted image Let g = (g(k',l')) be a NxN image, where the indices are taken as: -k. \le k' \le N-1-k. and -lo \le l' \le N-1-l. Let g be shifted image of g defined as: g(k, l) = g(k-ko, l-lo) where 0 = k = N-1 Then: $\hat{g}(m,n) = \frac{1}{N^2} \sum_{k=0}^{N-1} \sum_{l=n}^{N-1} g(k-k) e^{-j2\pi (\frac{km+ln}{N})}$ $= \frac{1}{N^{2}} \sum_{k=0}^{N-1-k} \sum_{k=0}^{N-1-k} g(k', l') e^{-j2\pi(\frac{k'm+l'n}{N})} e^{-j2\pi(\frac{k\cdot m+l\circ n}{N})}$ k'=-k. 1'=-1. $\hat{q}(\tilde{m},n)$

$$\hat{g}(m,n) = \hat{g}(m,n) e^{-j2\pi \left(\frac{k \cdot m + l \cdot n}{N}\right)}$$

